Аксиомы стереометрии.
Стереометрия – раздел геометрии, в котором изучаются фигуры в пространстве.
С1: какова бы ни была плоскость, существует точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.
С2: если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. Этой аксиомой утверждается, что если две различные плоскости a и b имеют общую точку, то существует прямая с , принадлежащая каждой из этих плоскостей. При этом если точка С принадлежит обеим плоскостям, то она принадлежит прямой с.
С3: если две различные прямые имеют общую точку, то через них можно провести плоскость и притом только одну. Это значит, что если две различные прямые a и b имеют общую точку С, то существует плоскость a, содержащая прямые a и b. Плоскость, обладающая этим свойством, единственна.
Теорема 15.1: через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну.
Доказательство: пусть АВ – данная прямая и С – не лежащая на ней точка. Проведем через точки А и С прямую (аксиома 1). Прямые АВ и АС различны, так как точка С не лежит на прямой АВ. Проведем через прямые АВ и АС плоскость a (аксиома С3). Она проходит через прямую АВ и точку С. Докажем, что плоскость a, проходящая через прямую АВ и точку С, единственна. Допустим, существует другая плоскость a1, проходящая через прямую АВ и точку С. По аксиоме С2 плоскости a и a1 пересекаются по прямой. Эта прямая должна содержать точки А, В и С. Но они не лежат на одной прямой. Мы пришли к противоречию. Теорема доказана.